三角函数公式大全表格 速记口诀是什么
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。下面和小编一起看看具体有哪些公式吧!
三角函数公式整理大全
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。以下是相关的公式:
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
a?sin(a)+b?cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
三角函数公式速记口诀是什么
“奇变偶不变”是说,角前面的度数是90度的倍数。如果是偶数,则函数名称不变,如果是奇数,则要变成它的余函数(正、余弦互相变,正、余切互相变,正、余割互相变)
例如cos270°-α= - sinα中, 270°是90°的3奇数倍所以cos变为sin,即奇变;又sin180°+α= - sinα中,180°是90°的2偶数倍所以sin还是sin,即偶不变。
“符号看象限”是说,要服从原来的角所在的象限中原来函数的符号。
例如cos270°-α=-sinα中,视α为锐角,270°-α是第三象限角,第三象限角的余弦为负,所以等式右边为负号。又如sin180°+α=-sinα中,视α为锐角,180°+α是第三象限角,第三象限角的正弦为负,所以等式右边有负号。
注意:公式中α可以不是锐角,只是为了记住公式,视α为锐角。